Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(10): 5955-5969, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829830

RESUMO

The adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R) and metabotropic glutamate receptor type 5 (mGluR5) form A2AR-D2R-mGluR5 heteroreceptor complexes in living cells and in rat striatal neurons. In the current study, we present experimental data supporting the view that the A2AR protomer plays a major role in the inhibitory modulation of the density and the allosteric receptor-receptor interaction within the D2R-mGluR5 heteromeric component of the A2AR-D2R-mGluR5 complex in vitro and in vivo. The A2AR and mGluR5 protomers interact and modulate D2R protomer recognition and signalling upon forming a trimeric complex from these receptors. Expression of A2AR in HEK293T cells co-expressing D2R and mGluR5 resulted in a significant and marked increase in the formation of the D2R-mGluR5 heteromeric component in both bioluminescence resonance energy transfer and proximity ligation assays. A highly significant increase of the the high-affinity component of D2R (D2RKi High) values was found upon cotreatment with the mGluR5 and A2AR agonists in the cells expressing A2AR, D2R and mGluR5 with a significant effect observed also with the mGluR5 agonist alone compared to cells expressing only D2R and mGluR5. In cells co-expressing A2AR, D2R and mGluR5, stimulation of the cells with an mGluR5 agonist like or D2R antagonist fully counteracted the D2R agonist-induced inhibition of the cAMP levels which was not true in cells only expressing mGluR5 and D2R. In agreement, the mGluR5-negative allosteric modulator raseglurant significantly reduced the haloperidol-induced catalepsy in mice, and in A2AR knockout mice, the haloperidol action had almost disappeared, supporting a functional role for mGluR5 and A2AR in enhancing D2R blockade resulting in catalepsy. The results represent a relevant example of integrative activity within higher-order heteroreceptor complexes.


Assuntos
Dopamina , Doença de Parkinson , Adenosina , Animais , Catalepsia , Células HEK293 , Haloperidol , Humanos , Camundongos , Subunidades Proteicas , Ratos , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo
3.
Pharmacol Rep ; 73(4): 1096-1108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34426901

RESUMO

The role of adenosine A2A receptor (A2AR) and striatal-enriched protein tyrosine phosphatase (STEP) interactions in the striatal-pallidal GABA neurons was recently discussed in relation to A2AR overexpression and cocaine-induced increases of brain adenosine levels. As to phosphorylation, combined activation of A2AR and metabotropic glutamate receptor 5 (mGluR5) in the striatal-pallidal GABA neurons appears necessary for phosphorylation of the GluA1 unit of the AMPA receptor to take place. Robert Yasuda (J Neurochem 152: 270-272, 2020) focused on finding a general mechanism by which STEP activation is enhanced by increased A2AR transmission in striatal-pallidal GABA neurons expressing A2AR and dopamine D2 receptor. In his Editorial, he summarized in a clear way the significant effects of A2AR activation on STEP in the dorsal striatal-pallidal GABA neurons which involves a rise of intracellular levels of calcium causing STEP activation through its dephosphorylation. However, the presence of the A2AR in an A2AR-fibroblast growth factor receptor 1 (FGFR1) heteroreceptor complex can be required in the dorsal striatal-pallidal GABA neurons for the STEP activation. Furthermore, Won et al. (Proc Natl Acad Sci USA 116: 8028-8037, 2019) found in mass spectrometry experiments that the STEP splice variant STEP61 can bind to mGluR5 and inactivate it. In addition, A2AR overexpression can lead to increased formation of A2AR-mGluR5 heterocomplexes in ventral striatal-pallidal GABA neurons. It involves enhanced facilitatory allosteric interactions leading to increased Gq-mediated mGluR5 signaling activating STEP. The involvement of both A2AR and STEP in the actions of cocaine on synaptic downregulation was also demonstrated. The enhancement of mGluR5 protomer activity by the A2AR protomer in A2AR-mGluR5 heterocomplexes in the nucleus accumbens shell appears to have a novel significant role in STEP mechanisms by both enhancing the activation of STEP and being a target for STEP61.


Assuntos
Neurônios GABAérgicos/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Células do Corno Posterior/fisiologia , Receptor A2A de Adenosina/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Subunidades Proteicas/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , Receptor A2A de Adenosina/genética , Receptor de Glutamato Metabotrópico 5/genética
4.
Cells ; 10(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440670

RESUMO

The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor-receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biological principle of forming 5-HT and other heteroreceptor complexes in the brain also help understand the mechanism of action for especially the 5-HT hallucinogens, including putative positive effects of e.g., psilocybin and the indicated prosocial and anti-stress actions of MDMA (ecstasy). The GalR1-GalR2 heterodimer and the putative GalR1-GalR2-5-HT1 heteroreceptor complexes are targets for Galanin N-terminal fragment Gal (1-15), a major modulator of emotional networks in models of mental disease. GPCR-receptor tyrosine kinase (RTK) heteroreceptor complexes can operate through transactivation of FGFR1 via allosteric mechanisms and indirect interactions over GPCR intracellular pathways involving protein kinase Src which produces tyrosine phosphorylation of the RTK. The exciting discovery was made that several antidepressant drugs such as TCAs and SSRIs as well as the fast-acting antidepressant drug ketamine can directly bind to the TrkB receptor and provide a novel mechanism for their antidepressant actions. Understanding the role of astrocytes and their allosteric receptor-receptor interactions in modulating forebrain glutamate synapses with impact on dorsal raphe-forebrain serotonin neurons is also of high relevance for research on major depressive disorder.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Mentais/metabolismo , Receptor Cross-Talk , Receptor 5-HT2A de Serotonina/metabolismo , Receptores 5-HT1 de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/fisiopatologia , Transtornos Mentais/psicologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Receptores de Dopamina D2/metabolismo , Receptores 5-HT1 de Serotonina/genética , Transdução de Sinais
5.
Front Pharmacol ; 12: 627032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790790

RESUMO

The widespread distribution of heteroreceptor complexes with allosteric receptor-receptor interactions in the CNS represents a novel integrative molecular mechanism in the plasma membrane of neurons and glial cells. It was proposed that they form the molecular basis for learning and short-and long-term memories. This is also true for drug memories formed during the development of substance use disorders like morphine and cocaine use disorders. In cocaine use disorder it was found that irreversible A2AR-D2R complexes with an allosteric brake on D2R recognition and signaling are formed in increased densities in the ventral enkephalin positive striatal-pallidal GABA antireward neurons. In this perspective article we discuss and propose how an increase in opioid heteroreceptor complexes, containing MOR-DOR, MOR-MOR and MOR-D2R, and their balance with each other and A2AR-D2R complexes in the striatal-pallidal enkephalin positive GABA antireward neurons, may represent markers for development of morphine use disorders. We suggest that increased formation of MOR-DOR complexes takes place in the striatal-pallidal enkephalin positive GABA antireward neurons after chronic morphine treatment in part through recruitment of MOR from the MOR-D2R complexes due to the possibility that MOR upon morphine treatment can develop a higher affinity for DOR. As a result, increased numbers of D2R monomers/homomers in these neurons become free to interact with the A2A receptors found in high densities within such neurons. Increased numbers of A2AR-D2R heteroreceptor complexes are formed and contribute to enhanced firing of these antireward neurons due to loss of inhibitory D2R protomer signaling which finally leads to the development of morphine use disorder. Development of cocaine use disorder may instead be reduced through enkephalin induced activation of the MOR-DOR complex inhibiting the activity of the enkephalin positive GABA antireward neurons. Altogether, we propose that these altered complexes could be pharmacological targets to modulate the reward and the development of substance use disorders.

6.
J Cell Physiol ; 236(5): 3565-3578, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33044017

RESUMO

A need for new antidepressants is necessary since traditional antidepressants have several flaws. Neuropeptide Y(NPY) Y1 receptor (NPYY1R) and galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the hippocampus. The current study assesses the antidepressant effects induced by GALR2 and NPYY1R coactivation, together with the evaluation of cell proliferation through 5-Bromo-2'-deoxyuridine expression within the dentate gyrus of the ventral hippocampus (vDG). We employed in situ proximity ligation assay to manifest GALR2/NPYY1R heteroreceptor complexes. Additionally, the expression pattern of GALR2 and the activation of the extracellular-regulated kinases (ERK) pathway after GALR2 and NPYY1R costimulation in cell cultures were examined. GALR2 and NPYY1R coactivation resulted in sustained antidepressant behaviors in the FST after 24 h, linked to increased cell proliferation in the vDG. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was observed in vDG, on doublecortin-expressing neuroblasts. Recruitment of the GALR2 expression to the plasma membrane was observed upon the coactivation of GALR2 and NPYY1R in cell cultures, presumably associated to the enhanced effects on the activation of ERK pathway. GALR2 may promote the GALR2/NPYY1R heteroreceptor complexes formation in the ventral hippocampus. It may induce a transformation of cell proliferation toward a neuronal lineage by enhancement of ERK pathway. Thus, it may give the mechanism for the antidepressant behavior observed. These results may provide the basis for the development of heterobivalent agonist pharmacophores, targeting GALR2/NPYY1R heteromers, especially in the neuronal precursor cells of the dentate gyrus in the ventral hippocampus for the novel treatment of depression.


Assuntos
Antidepressivos/metabolismo , Giro Denteado/metabolismo , Galanina/metabolismo , Células-Tronco Neurais/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Comportamento Animal , Bromodesoxiuridina/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Endocitose , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 2 de Galanina/metabolismo , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Elemento de Resposta Sérica/genética , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...